This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfdmsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ∈ ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptsnxp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) = ( { 𝐴 } × { 𝐵 } ) ) | |
| 2 | snex | ⊢ { 𝐴 } ∈ V | |
| 3 | distopon | ⊢ ( { 𝐴 } ∈ V → 𝒫 { 𝐴 } ∈ ( TopOn ‘ { 𝐴 } ) ) | |
| 4 | 2 3 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 { 𝐴 } ∈ ( TopOn ‘ { 𝐴 } ) ) |
| 5 | snex | ⊢ { 𝐵 } ∈ V | |
| 6 | distopon | ⊢ ( { 𝐵 } ∈ V → 𝒫 { 𝐵 } ∈ ( TopOn ‘ { 𝐵 } ) ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 { 𝐵 } ∈ ( TopOn ‘ { 𝐵 } ) ) |
| 8 | snidg | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 } ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ { 𝐵 } ) |
| 10 | cnconst2 | ⊢ ( ( 𝒫 { 𝐴 } ∈ ( TopOn ‘ { 𝐴 } ) ∧ 𝒫 { 𝐵 } ∈ ( TopOn ‘ { 𝐵 } ) ∧ 𝐵 ∈ { 𝐵 } ) → ( { 𝐴 } × { 𝐵 } ) ∈ ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) | |
| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × { 𝐵 } ) ∈ ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) |
| 12 | 1 11 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ∈ ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) |