This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrnbgr0nb | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbuhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 5 | df-nel | ⊢ ( 𝑁 ∉ 𝑒 ↔ ¬ 𝑁 ∈ 𝑒 ) | |
| 6 | prssg | ⊢ ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) | |
| 7 | simpl | ⊢ ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → 𝑁 ∈ 𝑒 ) | |
| 8 | 6 7 | biimtrrdi | ⊢ ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑒 ) ) |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑒 ) ) |
| 10 | 9 | con3d | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ¬ 𝑁 ∈ 𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 11 | 5 10 | biimtrid | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∉ 𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 12 | 11 | ralimdva | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 14 | ralnex | ⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 16 | 15 | expcom | ⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 17 | 16 | expd | ⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ( 𝐺 ∈ UHGraph → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) ) |
| 18 | 17 | impcom | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 19 | 18 | expdimp | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 20 | 19 | ralrimiv | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 21 | rabeq0 | ⊢ ( { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ) |
| 23 | 4 22 | eqtrd | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 24 | 23 | expcom | ⊢ ( 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) ) |
| 25 | id | ⊢ ( ¬ 𝑁 ∈ V → ¬ 𝑁 ∈ V ) | |
| 26 | 25 | intnand | ⊢ ( ¬ 𝑁 ∈ V → ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) ) |
| 27 | nbgrprc0 | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) | |
| 28 | 26 27 | syl | ⊢ ( ¬ 𝑁 ∈ V → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| 29 | 28 | a1d | ⊢ ( ¬ 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) ) |
| 30 | 24 29 | pm2.61i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |