This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nbuhgr2vtx1edgb . This reverse direction of nbgr2vtx1edg only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbgr2vtx1edg.v | |- V = ( Vtx ` G ) |
|
| nbgr2vtx1edg.e | |- E = ( Edg ` G ) |
||
| Assertion | nbuhgr2vtx1edgblem | |- ( ( G e. UHGraph /\ V = { a , b } /\ a e. ( G NeighbVtx b ) ) -> { a , b } e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr2vtx1edg.v | |- V = ( Vtx ` G ) |
|
| 2 | nbgr2vtx1edg.e | |- E = ( Edg ` G ) |
|
| 3 | 1 2 | nbgrel | |- ( a e. ( G NeighbVtx b ) <-> ( ( a e. V /\ b e. V ) /\ a =/= b /\ E. e e. E { b , a } C_ e ) ) |
| 4 | 2 | eleq2i | |- ( e e. E <-> e e. ( Edg ` G ) ) |
| 5 | edguhgr | |- ( ( G e. UHGraph /\ e e. ( Edg ` G ) ) -> e e. ~P ( Vtx ` G ) ) |
|
| 6 | 4 5 | sylan2b | |- ( ( G e. UHGraph /\ e e. E ) -> e e. ~P ( Vtx ` G ) ) |
| 7 | 1 | eqeq1i | |- ( V = { a , b } <-> ( Vtx ` G ) = { a , b } ) |
| 8 | pweq | |- ( ( Vtx ` G ) = { a , b } -> ~P ( Vtx ` G ) = ~P { a , b } ) |
|
| 9 | 8 | eleq2d | |- ( ( Vtx ` G ) = { a , b } -> ( e e. ~P ( Vtx ` G ) <-> e e. ~P { a , b } ) ) |
| 10 | velpw | |- ( e e. ~P { a , b } <-> e C_ { a , b } ) |
|
| 11 | 9 10 | bitrdi | |- ( ( Vtx ` G ) = { a , b } -> ( e e. ~P ( Vtx ` G ) <-> e C_ { a , b } ) ) |
| 12 | 7 11 | sylbi | |- ( V = { a , b } -> ( e e. ~P ( Vtx ` G ) <-> e C_ { a , b } ) ) |
| 13 | 12 | adantl | |- ( ( ( G e. UHGraph /\ e e. E ) /\ V = { a , b } ) -> ( e e. ~P ( Vtx ` G ) <-> e C_ { a , b } ) ) |
| 14 | prcom | |- { b , a } = { a , b } |
|
| 15 | 14 | sseq1i | |- ( { b , a } C_ e <-> { a , b } C_ e ) |
| 16 | eqss | |- ( { a , b } = e <-> ( { a , b } C_ e /\ e C_ { a , b } ) ) |
|
| 17 | eleq1a | |- ( e e. E -> ( { a , b } = e -> { a , b } e. E ) ) |
|
| 18 | 17 | a1i | |- ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> ( e e. E -> ( { a , b } = e -> { a , b } e. E ) ) ) |
| 19 | 18 | com13 | |- ( { a , b } = e -> ( e e. E -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) |
| 20 | 16 19 | sylbir | |- ( ( { a , b } C_ e /\ e C_ { a , b } ) -> ( e e. E -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) |
| 21 | 20 | ex | |- ( { a , b } C_ e -> ( e C_ { a , b } -> ( e e. E -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 22 | 15 21 | sylbi | |- ( { b , a } C_ e -> ( e C_ { a , b } -> ( e e. E -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 23 | 22 | com13 | |- ( e e. E -> ( e C_ { a , b } -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 24 | 23 | ad2antlr | |- ( ( ( G e. UHGraph /\ e e. E ) /\ V = { a , b } ) -> ( e C_ { a , b } -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 25 | 13 24 | sylbid | |- ( ( ( G e. UHGraph /\ e e. E ) /\ V = { a , b } ) -> ( e e. ~P ( Vtx ` G ) -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 26 | 25 | ex | |- ( ( G e. UHGraph /\ e e. E ) -> ( V = { a , b } -> ( e e. ~P ( Vtx ` G ) -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) ) |
| 27 | 6 26 | mpid | |- ( ( G e. UHGraph /\ e e. E ) -> ( V = { a , b } -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 28 | 27 | impancom | |- ( ( G e. UHGraph /\ V = { a , b } ) -> ( e e. E -> ( { b , a } C_ e -> ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> { a , b } e. E ) ) ) ) |
| 29 | 28 | com14 | |- ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> ( e e. E -> ( { b , a } C_ e -> ( ( G e. UHGraph /\ V = { a , b } ) -> { a , b } e. E ) ) ) ) |
| 30 | 29 | rexlimdv | |- ( ( ( a e. V /\ b e. V ) /\ a =/= b ) -> ( E. e e. E { b , a } C_ e -> ( ( G e. UHGraph /\ V = { a , b } ) -> { a , b } e. E ) ) ) |
| 31 | 30 | 3impia | |- ( ( ( a e. V /\ b e. V ) /\ a =/= b /\ E. e e. E { b , a } C_ e ) -> ( ( G e. UHGraph /\ V = { a , b } ) -> { a , b } e. E ) ) |
| 32 | 31 | com12 | |- ( ( G e. UHGraph /\ V = { a , b } ) -> ( ( ( a e. V /\ b e. V ) /\ a =/= b /\ E. e e. E { b , a } C_ e ) -> { a , b } e. E ) ) |
| 33 | 3 32 | biimtrid | |- ( ( G e. UHGraph /\ V = { a , b } ) -> ( a e. ( G NeighbVtx b ) -> { a , b } e. E ) ) |
| 34 | 33 | 3impia | |- ( ( G e. UHGraph /\ V = { a , b } /\ a e. ( G NeighbVtx b ) ) -> { a , b } e. E ) |