This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nb3gr2nb | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) <-> ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } /\ ( G NeighbVtx C ) = { A , B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom | |- { A , C } = { C , A } |
|
| 2 | 1 | eleq1i | |- ( { A , C } e. ( Edg ` G ) <-> { C , A } e. ( Edg ` G ) ) |
| 3 | 2 | biimpi | |- ( { A , C } e. ( Edg ` G ) -> { C , A } e. ( Edg ` G ) ) |
| 4 | 3 | adantl | |- ( ( { A , B } e. ( Edg ` G ) /\ { A , C } e. ( Edg ` G ) ) -> { C , A } e. ( Edg ` G ) ) |
| 5 | prcom | |- { B , C } = { C , B } |
|
| 6 | 5 | eleq1i | |- ( { B , C } e. ( Edg ` G ) <-> { C , B } e. ( Edg ` G ) ) |
| 7 | 6 | biimpi | |- ( { B , C } e. ( Edg ` G ) -> { C , B } e. ( Edg ` G ) ) |
| 8 | 7 | adantl | |- ( ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) -> { C , B } e. ( Edg ` G ) ) |
| 9 | 4 8 | anim12i | |- ( ( ( { A , B } e. ( Edg ` G ) /\ { A , C } e. ( Edg ` G ) ) /\ ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) ) -> ( { C , A } e. ( Edg ` G ) /\ { C , B } e. ( Edg ` G ) ) ) |
| 10 | 9 | a1i | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( { A , B } e. ( Edg ` G ) /\ { A , C } e. ( Edg ` G ) ) /\ ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) ) -> ( { C , A } e. ( Edg ` G ) /\ { C , B } e. ( Edg ` G ) ) ) ) |
| 11 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 12 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 13 | simprr | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> G e. USGraph ) |
|
| 14 | simprl | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( Vtx ` G ) = { A , B , C } ) |
|
| 15 | simpl | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 16 | 11 12 13 14 15 | nb3grprlem1 | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( G NeighbVtx A ) = { B , C } <-> ( { A , B } e. ( Edg ` G ) /\ { A , C } e. ( Edg ` G ) ) ) ) |
| 17 | 3ancoma | |- ( ( A e. X /\ B e. Y /\ C e. Z ) <-> ( B e. Y /\ A e. X /\ C e. Z ) ) |
|
| 18 | 17 | biimpi | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( B e. Y /\ A e. X /\ C e. Z ) ) |
| 19 | tpcoma | |- { A , B , C } = { B , A , C } |
|
| 20 | 19 | eqeq2i | |- ( ( Vtx ` G ) = { A , B , C } <-> ( Vtx ` G ) = { B , A , C } ) |
| 21 | 20 | biimpi | |- ( ( Vtx ` G ) = { A , B , C } -> ( Vtx ` G ) = { B , A , C } ) |
| 22 | 21 | anim1i | |- ( ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) -> ( ( Vtx ` G ) = { B , A , C } /\ G e. USGraph ) ) |
| 23 | simprr | |- ( ( ( B e. Y /\ A e. X /\ C e. Z ) /\ ( ( Vtx ` G ) = { B , A , C } /\ G e. USGraph ) ) -> G e. USGraph ) |
|
| 24 | simprl | |- ( ( ( B e. Y /\ A e. X /\ C e. Z ) /\ ( ( Vtx ` G ) = { B , A , C } /\ G e. USGraph ) ) -> ( Vtx ` G ) = { B , A , C } ) |
|
| 25 | simpl | |- ( ( ( B e. Y /\ A e. X /\ C e. Z ) /\ ( ( Vtx ` G ) = { B , A , C } /\ G e. USGraph ) ) -> ( B e. Y /\ A e. X /\ C e. Z ) ) |
|
| 26 | 11 12 23 24 25 | nb3grprlem1 | |- ( ( ( B e. Y /\ A e. X /\ C e. Z ) /\ ( ( Vtx ` G ) = { B , A , C } /\ G e. USGraph ) ) -> ( ( G NeighbVtx B ) = { A , C } <-> ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) ) ) |
| 27 | 18 22 26 | syl2an | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( G NeighbVtx B ) = { A , C } <-> ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) ) ) |
| 28 | 16 27 | anbi12d | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) <-> ( ( { A , B } e. ( Edg ` G ) /\ { A , C } e. ( Edg ` G ) ) /\ ( { B , A } e. ( Edg ` G ) /\ { B , C } e. ( Edg ` G ) ) ) ) ) |
| 29 | 3anrot | |- ( ( C e. Z /\ A e. X /\ B e. Y ) <-> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 30 | 29 | biimpri | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( C e. Z /\ A e. X /\ B e. Y ) ) |
| 31 | tprot | |- { C , A , B } = { A , B , C } |
|
| 32 | 31 | eqcomi | |- { A , B , C } = { C , A , B } |
| 33 | 32 | eqeq2i | |- ( ( Vtx ` G ) = { A , B , C } <-> ( Vtx ` G ) = { C , A , B } ) |
| 34 | 33 | anbi1i | |- ( ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) <-> ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) |
| 35 | 34 | biimpi | |- ( ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) -> ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) |
| 36 | simprr | |- ( ( ( C e. Z /\ A e. X /\ B e. Y ) /\ ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) -> G e. USGraph ) |
|
| 37 | simprl | |- ( ( ( C e. Z /\ A e. X /\ B e. Y ) /\ ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) -> ( Vtx ` G ) = { C , A , B } ) |
|
| 38 | simpl | |- ( ( ( C e. Z /\ A e. X /\ B e. Y ) /\ ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) -> ( C e. Z /\ A e. X /\ B e. Y ) ) |
|
| 39 | 11 12 36 37 38 | nb3grprlem1 | |- ( ( ( C e. Z /\ A e. X /\ B e. Y ) /\ ( ( Vtx ` G ) = { C , A , B } /\ G e. USGraph ) ) -> ( ( G NeighbVtx C ) = { A , B } <-> ( { C , A } e. ( Edg ` G ) /\ { C , B } e. ( Edg ` G ) ) ) ) |
| 40 | 30 35 39 | syl2an | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( G NeighbVtx C ) = { A , B } <-> ( { C , A } e. ( Edg ` G ) /\ { C , B } e. ( Edg ` G ) ) ) ) |
| 41 | 10 28 40 | 3imtr4d | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) -> ( G NeighbVtx C ) = { A , B } ) ) |
| 42 | 41 | pm4.71d | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) <-> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) /\ ( G NeighbVtx C ) = { A , B } ) ) ) |
| 43 | df-3an | |- ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } /\ ( G NeighbVtx C ) = { A , B } ) <-> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) /\ ( G NeighbVtx C ) = { A , B } ) ) |
|
| 44 | 42 43 | bitr4di | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ( ( Vtx ` G ) = { A , B , C } /\ G e. USGraph ) ) -> ( ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } ) <-> ( ( G NeighbVtx A ) = { B , C } /\ ( G NeighbVtx B ) = { A , C } /\ ( G NeighbVtx C ) = { A , B } ) ) ) |