This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Möbius function, which is zero for non-squarefree numbers and is -u 1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in ApostolNT p. 24. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mu | ⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmu | ⊢ μ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cn | ⊢ ℕ | |
| 3 | vp | ⊢ 𝑝 | |
| 4 | cprime | ⊢ ℙ | |
| 5 | 3 | cv | ⊢ 𝑝 |
| 6 | cexp | ⊢ ↑ | |
| 7 | c2 | ⊢ 2 | |
| 8 | 5 7 6 | co | ⊢ ( 𝑝 ↑ 2 ) |
| 9 | cdvds | ⊢ ∥ | |
| 10 | 1 | cv | ⊢ 𝑥 |
| 11 | 8 10 9 | wbr | ⊢ ( 𝑝 ↑ 2 ) ∥ 𝑥 |
| 12 | 11 3 4 | wrex | ⊢ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 |
| 13 | cc0 | ⊢ 0 | |
| 14 | c1 | ⊢ 1 | |
| 15 | 14 | cneg | ⊢ - 1 |
| 16 | chash | ⊢ ♯ | |
| 17 | 5 10 9 | wbr | ⊢ 𝑝 ∥ 𝑥 |
| 18 | 17 3 4 | crab | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } |
| 19 | 18 16 | cfv | ⊢ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) |
| 20 | 15 19 6 | co | ⊢ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) |
| 21 | 12 13 20 | cif | ⊢ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) |
| 22 | 1 2 21 | cmpt | ⊢ ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |
| 23 | 0 22 | wceq | ⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |