This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladdmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 3 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 5 | 2 4 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 𝑀 ) ∈ ℝ ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 7 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℝ+ ) | |
| 8 | modaddmod | ⊢ ( ( ( 𝑁 · 𝑀 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ( 𝑁 · 𝑀 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) ) | |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑁 · 𝑀 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) ) |
| 10 | pm3.22 | ⊢ ( ( 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ) |
| 12 | mulmod0 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑁 · 𝑀 ) mod 𝑀 ) = 0 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 · 𝑀 ) mod 𝑀 ) = 0 ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑁 · 𝑀 ) mod 𝑀 ) + 𝐴 ) = ( 0 + 𝐴 ) ) |
| 15 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 16 | 15 | addlidd | ⊢ ( 𝐴 ∈ ℝ → ( 0 + 𝐴 ) = 𝐴 ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 18 | 14 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑁 · 𝑀 ) mod 𝑀 ) + 𝐴 ) = 𝐴 ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑁 · 𝑀 ) mod 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
| 20 | 9 19 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |