This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulnzcnf | |- ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) : ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) --> ( CC \ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf | |- x. : ( CC X. CC ) --> CC |
|
| 2 | ffnov | |- ( x. : ( CC X. CC ) --> CC <-> ( x. Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x x. y ) e. CC ) ) |
|
| 3 | 1 2 | mpbi | |- ( x. Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x x. y ) e. CC ) |
| 4 | 3 | simpli | |- x. Fn ( CC X. CC ) |
| 5 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 6 | xpss12 | |- ( ( ( CC \ { 0 } ) C_ CC /\ ( CC \ { 0 } ) C_ CC ) -> ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) ) |
|
| 7 | 5 5 6 | mp2an | |- ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) |
| 8 | fnssres | |- ( ( x. Fn ( CC X. CC ) /\ ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) ) -> ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) |
|
| 9 | 4 7 8 | mp2an | |- ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) |
| 10 | ovres | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) = ( x x. y ) ) |
|
| 11 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 12 | eldifsn | |- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
|
| 13 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 14 | 13 | ad2ant2r | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) e. CC ) |
| 15 | mulne0 | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
|
| 16 | 14 15 | jca | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
| 17 | 11 12 16 | syl2anb | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
| 18 | eldifsn | |- ( ( x x. y ) e. ( CC \ { 0 } ) <-> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 20 | 10 19 | eqeltrd | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) ) |
| 21 | 20 | rgen2 | |- A. x e. ( CC \ { 0 } ) A. y e. ( CC \ { 0 } ) ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) |
| 22 | ffnov | |- ( ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) : ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) --> ( CC \ { 0 } ) <-> ( ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) /\ A. x e. ( CC \ { 0 } ) A. y e. ( CC \ { 0 } ) ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) ) ) |
|
| 23 | 9 21 22 | mpbir2an | |- ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) : ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) --> ( CC \ { 0 } ) |