This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor, extended to ZZ . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnndir.b | |- B = ( Base ` G ) |
|
| mulgnndir.t | |- .x. = ( .g ` G ) |
||
| mulgnndir.p | |- .+ = ( +g ` G ) |
||
| Assertion | mulgp1 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnndir.b | |- B = ( Base ` G ) |
|
| 2 | mulgnndir.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnndir.p | |- .+ = ( +g ` G ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | 1 2 3 | mulgdir | |- ( ( G e. Grp /\ ( N e. ZZ /\ 1 e. ZZ /\ X e. B ) ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) |
| 6 | 4 5 | mp3anr2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ X e. B ) ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) |
| 7 | 6 | 3impb | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) |
| 8 | 1 2 | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| 9 | 8 | 3ad2ant3 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( 1 .x. X ) = X ) |
| 10 | 9 | oveq2d | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N .x. X ) .+ ( 1 .x. X ) ) = ( ( N .x. X ) .+ X ) ) |
| 11 | 7 10 | eqtrd | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |