This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgsubdi.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgsubdi.d | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | mulgsubdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 − 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) − ( 𝑀 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgsubdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgsubdi.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgsubdi.d | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 5 | simpr1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) | |
| 6 | simpr2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 9 | simpr3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 11 | 1 10 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | 1 2 13 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑀 · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 15 | 4 5 6 12 14 | syl13anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑀 · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 16 | 1 2 10 | mulginvcom | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 17 | 8 5 9 16 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑀 · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 20 | 1 13 10 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 21 | 6 9 20 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 − 𝑌 ) ) = ( 𝑀 · ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) ) |
| 23 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 24 | 8 5 6 23 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 25 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 26 | 8 5 9 25 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 27 | 1 13 10 3 | grpsubval | ⊢ ( ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) − ( 𝑀 · 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 28 | 24 26 27 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) − ( 𝑀 · 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 29 | 19 22 28 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 − 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) − ( 𝑀 · 𝑌 ) ) ) |