This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgfn.b | |- B = ( Base ` G ) |
|
| mulgfn.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgfn | |- .x. Fn ( ZZ X. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgfn.b | |- B = ( Base ` G ) |
|
| 2 | mulgfn.t | |- .x. = ( .g ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 6 | 1 3 4 5 2 | mulgfval | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , ( 0g ` G ) , if ( 0 < n , ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` n ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 7 | fvex | |- ( 0g ` G ) e. _V |
|
| 8 | fvex | |- ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` n ) e. _V |
|
| 9 | fvex | |- ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` -u n ) ) e. _V |
|
| 10 | 8 9 | ifex | |- if ( 0 < n , ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` n ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` -u n ) ) ) e. _V |
| 11 | 7 10 | ifex | |- if ( n = 0 , ( 0g ` G ) , if ( 0 < n , ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` n ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { x } ) ) ` -u n ) ) ) ) e. _V |
| 12 | 6 11 | fnmpoi | |- .x. Fn ( ZZ X. B ) |