This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mulgfvi.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| Assertion | mulgfvi | ⊢ · = ( .g ‘ ( I ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgfvi.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 2 | fvi | ⊢ ( 𝐺 ∈ V → ( I ‘ 𝐺 ) = 𝐺 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝐺 ∈ V → 𝐺 = ( I ‘ 𝐺 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) ) |
| 5 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) | |
| 6 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( I ‘ 𝐺 ) = ∅ ) | |
| 7 | 6 | fveq2d | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ( .g ‘ ∅ ) ) |
| 8 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 9 | eqid | ⊢ ( .g ‘ ∅ ) = ( .g ‘ ∅ ) | |
| 10 | 8 9 | mulgfn | ⊢ ( .g ‘ ∅ ) Fn ( ℤ × ∅ ) |
| 11 | xp0 | ⊢ ( ℤ × ∅ ) = ∅ | |
| 12 | 11 | fneq2i | ⊢ ( ( .g ‘ ∅ ) Fn ( ℤ × ∅ ) ↔ ( .g ‘ ∅ ) Fn ∅ ) |
| 13 | 10 12 | mpbi | ⊢ ( .g ‘ ∅ ) Fn ∅ |
| 14 | fn0 | ⊢ ( ( .g ‘ ∅ ) Fn ∅ ↔ ( .g ‘ ∅ ) = ∅ ) | |
| 15 | 13 14 | mpbi | ⊢ ( .g ‘ ∅ ) = ∅ |
| 16 | 7 15 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ∅ ) |
| 17 | 5 16 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) ) |
| 18 | 4 17 | pm2.61i | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) |
| 19 | 1 18 | eqtri | ⊢ · = ( .g ‘ ( I ‘ 𝐺 ) ) |