This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulge0b | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | ⊢ ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 6 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) | |
| 7 | 2 6 | mpan | ⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 ↔ ¬ 𝐵 ≤ 0 ) ) |
| 9 | 5 8 | orbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) ↔ ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) ) ) |
| 11 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 12 | 2 11 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
| 14 | 13 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 15 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 17 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 18 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) | |
| 19 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) | |
| 20 | divge0 | ⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) | |
| 21 | 16 17 18 19 20 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐴 ) ) |
| 22 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 24 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 26 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 27 | 26 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 28 | 23 25 27 | divcan3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐴 ) = 𝐵 ) |
| 29 | 21 28 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐵 ) |
| 30 | 14 29 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐴 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 31 | 30 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐴 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 32 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 33 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 34 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 35 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) | |
| 36 | divge0 | ⊢ ( ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) | |
| 37 | 32 33 34 35 36 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ ( ( 𝐴 · 𝐵 ) / 𝐵 ) ) |
| 38 | 24 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 39 | 22 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 40 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 41 | 40 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 42 | 38 39 41 | divcan4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 43 | 37 42 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐴 ) |
| 44 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) | |
| 45 | 2 44 | mpan | ⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 0 ≤ 𝐵 ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 0 ≤ 𝐵 ) |
| 47 | 46 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → 0 ≤ 𝐵 ) |
| 48 | 43 47 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 · 𝐵 ) ∧ 0 < 𝐵 ) ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 49 | 48 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( 0 < 𝐵 → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 50 | 31 49 | jaod | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 0 < 𝐴 ∨ 0 < 𝐵 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 51 | 10 50 | sylbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( ¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 52 | 1 51 | biimtrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ¬ ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 53 | 52 | orrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 ≤ ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |
| 55 | le0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 ↔ 0 ≤ - 𝐴 ) ) | |
| 56 | le0neg1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) | |
| 57 | 55 56 | bi2anan9 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ↔ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) |
| 58 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 59 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 60 | mulge0 | ⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ∧ ( - 𝐵 ∈ ℝ ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) | |
| 61 | 60 | an4s | ⊢ ( ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) ∧ ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) |
| 62 | 61 | ex | ⊢ ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
| 63 | 58 59 62 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( - 𝐴 · - 𝐵 ) ) ) |
| 64 | mul2neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 65 | 24 22 64 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 66 | 65 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( - 𝐴 · - 𝐵 ) ↔ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 67 | 63 66 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ - 𝐴 ∧ 0 ≤ - 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 68 | 57 67 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 69 | mulge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 70 | 69 | an4s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
| 71 | 70 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 72 | 68 71 | jaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
| 73 | 54 72 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) ) |