This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulle0b | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | le0neg1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ≤ 0 ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
| 3 | le0neg2 | ⊢ ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) ) | |
| 4 | 3 | anbi2d | ⊢ ( 𝐵 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ) ) |
| 5 | le0neg1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝐵 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ↔ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) |
| 7 | 4 6 | orbi12d | ⊢ ( 𝐵 ∈ ℝ → ( ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
| 9 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 10 | mulge0b | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
| 12 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 13 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 14 | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) | |
| 15 | 14 | breq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
| 16 | 12 13 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
| 17 | 8 11 16 | 3bitr2rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ - ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ) ) |
| 18 | 2 17 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ) ) |