This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcompi | ⊢ ( 𝐴 +N 𝐵 ) = ( 𝐵 +N 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 2 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 3 | nnacom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +o 𝐵 ) = ( 𝐵 +o 𝐴 ) ) |
| 5 | addpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) | |
| 6 | addpiord | ⊢ ( ( 𝐵 ∈ N ∧ 𝐴 ∈ N ) → ( 𝐵 +N 𝐴 ) = ( 𝐵 +o 𝐴 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐵 +N 𝐴 ) = ( 𝐵 +o 𝐴 ) ) |
| 8 | 4 5 7 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐵 +N 𝐴 ) ) |
| 9 | dmaddpi | ⊢ dom +N = ( N × N ) | |
| 10 | 9 | ndmovcom | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐵 +N 𝐴 ) ) |
| 11 | 8 10 | pm2.61i | ⊢ ( 𝐴 +N 𝐵 ) = ( 𝐵 +N 𝐴 ) |