This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msq11 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le2msq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) | |
| 2 | le2msq | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ∧ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) ) |
| 5 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 6 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 7 | 5 6 | letri3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 8 | 5 5 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 9 | 6 6 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
| 10 | 8 9 | letri3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ ( ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ∧ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) ) |
| 11 | 4 7 10 | 3bitr4rd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |