This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msq11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le2msq | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) ) |
|
| 2 | le2msq | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( B <_ A <-> ( B x. B ) <_ ( A x. A ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B <_ A <-> ( B x. B ) <_ ( A x. A ) ) ) |
| 4 | 1 3 | anbi12d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A <_ B /\ B <_ A ) <-> ( ( A x. A ) <_ ( B x. B ) /\ ( B x. B ) <_ ( A x. A ) ) ) ) |
| 5 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
|
| 6 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
|
| 7 | 5 6 | letri3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 8 | 5 5 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. A ) e. RR ) |
| 9 | 6 6 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B x. B ) e. RR ) |
| 10 | 8 9 | letri3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> ( ( A x. A ) <_ ( B x. B ) /\ ( B x. B ) <_ ( A x. A ) ) ) ) |
| 11 | 4 7 10 | 3bitr4rd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) |