This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreriincl | |- ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) -> ( X i^i |^|_ y e. I S ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 | |- ( I = (/) -> ( X i^i |^|_ y e. I S ) = X ) |
|
| 2 | 1 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I = (/) ) -> ( X i^i |^|_ y e. I S ) = X ) |
| 3 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I = (/) ) -> X e. C ) |
| 5 | 2 4 | eqeltrd | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I = (/) ) -> ( X i^i |^|_ y e. I S ) e. C ) |
| 6 | mress | |- ( ( C e. ( Moore ` X ) /\ S e. C ) -> S C_ X ) |
|
| 7 | 6 | ex | |- ( C e. ( Moore ` X ) -> ( S e. C -> S C_ X ) ) |
| 8 | 7 | ralimdv | |- ( C e. ( Moore ` X ) -> ( A. y e. I S e. C -> A. y e. I S C_ X ) ) |
| 9 | 8 | imp | |- ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) -> A. y e. I S C_ X ) |
| 10 | riinn0 | |- ( ( A. y e. I S C_ X /\ I =/= (/) ) -> ( X i^i |^|_ y e. I S ) = |^|_ y e. I S ) |
|
| 11 | 9 10 | sylan | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> ( X i^i |^|_ y e. I S ) = |^|_ y e. I S ) |
| 12 | simpll | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> C e. ( Moore ` X ) ) |
|
| 13 | simpr | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> I =/= (/) ) |
|
| 14 | simplr | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> A. y e. I S e. C ) |
|
| 15 | mreiincl | |- ( ( C e. ( Moore ` X ) /\ I =/= (/) /\ A. y e. I S e. C ) -> |^|_ y e. I S e. C ) |
|
| 16 | 12 13 14 15 | syl3anc | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> |^|_ y e. I S e. C ) |
| 17 | 11 16 | eqeltrd | |- ( ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) /\ I =/= (/) ) -> ( X i^i |^|_ y e. I S ) e. C ) |
| 18 | 5 17 | pm2.61dane | |- ( ( C e. ( Moore ` X ) /\ A. y e. I S e. C ) -> ( X i^i |^|_ y e. I S ) e. C ) |