This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcuni | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) = ( F ` U. ( F " U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | simpl | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> C e. ( Moore ` X ) ) |
|
| 3 | simpll | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> C e. ( Moore ` X ) ) |
|
| 4 | ssel2 | |- ( ( U C_ ~P X /\ s e. U ) -> s e. ~P X ) |
|
| 5 | 4 | elpwid | |- ( ( U C_ ~P X /\ s e. U ) -> s C_ X ) |
| 6 | 5 | adantll | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ X ) |
| 7 | 1 | mrcssid | |- ( ( C e. ( Moore ` X ) /\ s C_ X ) -> s C_ ( F ` s ) ) |
| 8 | 3 6 7 | syl2anc | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ ( F ` s ) ) |
| 9 | 1 | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
| 10 | 9 | ffund | |- ( C e. ( Moore ` X ) -> Fun F ) |
| 11 | 10 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> Fun F ) |
| 12 | 9 | fdmd | |- ( C e. ( Moore ` X ) -> dom F = ~P X ) |
| 13 | 12 | sseq2d | |- ( C e. ( Moore ` X ) -> ( U C_ dom F <-> U C_ ~P X ) ) |
| 14 | 13 | biimpar | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U C_ dom F ) |
| 15 | funfvima2 | |- ( ( Fun F /\ U C_ dom F ) -> ( s e. U -> ( F ` s ) e. ( F " U ) ) ) |
|
| 16 | 11 14 15 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( s e. U -> ( F ` s ) e. ( F " U ) ) ) |
| 17 | 16 | imp | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> ( F ` s ) e. ( F " U ) ) |
| 18 | elssuni | |- ( ( F ` s ) e. ( F " U ) -> ( F ` s ) C_ U. ( F " U ) ) |
|
| 19 | 17 18 | syl | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> ( F ` s ) C_ U. ( F " U ) ) |
| 20 | 8 19 | sstrd | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ s e. U ) -> s C_ U. ( F " U ) ) |
| 21 | 20 | ralrimiva | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. U s C_ U. ( F " U ) ) |
| 22 | unissb | |- ( U. U C_ U. ( F " U ) <-> A. s e. U s C_ U. ( F " U ) ) |
|
| 23 | 21 22 | sylibr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. U C_ U. ( F " U ) ) |
| 24 | 1 | mrcssv | |- ( C e. ( Moore ` X ) -> ( F ` x ) C_ X ) |
| 25 | 24 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` x ) C_ X ) |
| 26 | 25 | ralrimivw | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. x e. U ( F ` x ) C_ X ) |
| 27 | 9 | ffnd | |- ( C e. ( Moore ` X ) -> F Fn ~P X ) |
| 28 | sseq1 | |- ( s = ( F ` x ) -> ( s C_ X <-> ( F ` x ) C_ X ) ) |
|
| 29 | 28 | ralima | |- ( ( F Fn ~P X /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ X <-> A. x e. U ( F ` x ) C_ X ) ) |
| 30 | 27 29 | sylan | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ X <-> A. x e. U ( F ` x ) C_ X ) ) |
| 31 | 26 30 | mpbird | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. ( F " U ) s C_ X ) |
| 32 | unissb | |- ( U. ( F " U ) C_ X <-> A. s e. ( F " U ) s C_ X ) |
|
| 33 | 31 32 | sylibr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. ( F " U ) C_ X ) |
| 34 | 1 | mrcss | |- ( ( C e. ( Moore ` X ) /\ U. U C_ U. ( F " U ) /\ U. ( F " U ) C_ X ) -> ( F ` U. U ) C_ ( F ` U. ( F " U ) ) ) |
| 35 | 2 23 33 34 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) C_ ( F ` U. ( F " U ) ) ) |
| 36 | simpll | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> C e. ( Moore ` X ) ) |
|
| 37 | elssuni | |- ( x e. U -> x C_ U. U ) |
|
| 38 | 37 | adantl | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> x C_ U. U ) |
| 39 | sspwuni | |- ( U C_ ~P X <-> U. U C_ X ) |
|
| 40 | 39 | biimpi | |- ( U C_ ~P X -> U. U C_ X ) |
| 41 | 40 | adantl | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. U C_ X ) |
| 42 | 41 | adantr | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> U. U C_ X ) |
| 43 | 1 | mrcss | |- ( ( C e. ( Moore ` X ) /\ x C_ U. U /\ U. U C_ X ) -> ( F ` x ) C_ ( F ` U. U ) ) |
| 44 | 36 38 42 43 | syl3anc | |- ( ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) /\ x e. U ) -> ( F ` x ) C_ ( F ` U. U ) ) |
| 45 | 44 | ralrimiva | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) |
| 46 | sseq1 | |- ( s = ( F ` x ) -> ( s C_ ( F ` U. U ) <-> ( F ` x ) C_ ( F ` U. U ) ) ) |
|
| 47 | 46 | ralima | |- ( ( F Fn ~P X /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ ( F ` U. U ) <-> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) ) |
| 48 | 27 47 | sylan | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( A. s e. ( F " U ) s C_ ( F ` U. U ) <-> A. x e. U ( F ` x ) C_ ( F ` U. U ) ) ) |
| 49 | 45 48 | mpbird | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> A. s e. ( F " U ) s C_ ( F ` U. U ) ) |
| 50 | unissb | |- ( U. ( F " U ) C_ ( F ` U. U ) <-> A. s e. ( F " U ) s C_ ( F ` U. U ) ) |
|
| 51 | 49 50 | sylibr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> U. ( F " U ) C_ ( F ` U. U ) ) |
| 52 | 1 | mrcssv | |- ( C e. ( Moore ` X ) -> ( F ` U. U ) C_ X ) |
| 53 | 52 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) C_ X ) |
| 54 | 1 | mrcss | |- ( ( C e. ( Moore ` X ) /\ U. ( F " U ) C_ ( F ` U. U ) /\ ( F ` U. U ) C_ X ) -> ( F ` U. ( F " U ) ) C_ ( F ` ( F ` U. U ) ) ) |
| 55 | 2 51 53 54 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. ( F " U ) ) C_ ( F ` ( F ` U. U ) ) ) |
| 56 | 1 | mrcidm | |- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` ( F ` U. U ) ) = ( F ` U. U ) ) |
| 57 | 2 41 56 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` ( F ` U. U ) ) = ( F ` U. U ) ) |
| 58 | 55 57 | sseqtrd | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. ( F " U ) ) C_ ( F ` U. U ) ) |
| 59 | 35 58 | eqssd | |- ( ( C e. ( Moore ` X ) /\ U C_ ~P X ) -> ( F ` U. U ) = ( F ` U. ( F " U ) ) ) |