This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | sstr2 | ⊢ ( 𝑈 ⊆ 𝑉 → ( 𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑠 ∈ 𝐶 ) → ( 𝑉 ⊆ 𝑠 → 𝑈 ⊆ 𝑠 ) ) |
| 4 | 3 | ss2rabdv | ⊢ ( 𝑈 ⊆ 𝑉 → { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ⊆ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 5 | intss | ⊢ ( { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ⊆ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ⊆ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑈 ⊆ 𝑉 → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ⊆ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ⊆ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ) |
| 8 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 9 | sstr | ⊢ ( ( 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → 𝑈 ⊆ 𝑋 ) | |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → 𝑈 ⊆ 𝑋 ) |
| 11 | 1 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 13 | 1 | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑉 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑉 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑉 ⊆ 𝑠 } ) |
| 15 | 7 12 14 | 3sstr4d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑉 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) ⊆ ( 𝐹 ‘ 𝑉 ) ) |