This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mrcflem | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 𝑋 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | ssrab2 | ⊢ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 | |
| 3 | 2 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 ) |
| 4 | sseq2 | ⊢ ( 𝑠 = 𝑋 → ( 𝑥 ⊆ 𝑠 ↔ 𝑥 ⊆ 𝑋 ) ) | |
| 5 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 7 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
| 9 | 4 6 8 | elrabd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 ∈ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
| 10 | 9 | ne0d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ≠ ∅ ) |
| 11 | mreintcl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ⊆ 𝐶 ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ≠ ∅ ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ∈ 𝐶 ) | |
| 12 | 1 3 10 11 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ∈ 𝐶 ) |
| 13 | 12 | fmpttd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 𝑋 ⟶ 𝐶 ) |