This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnmrc | ⊢ mrCls Fn ∪ ran Moore |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mrc | ⊢ mrCls = ( 𝑐 ∈ ∪ ran Moore ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ) | |
| 2 | 1 | fnmpt | ⊢ ( ∀ 𝑐 ∈ ∪ ran Moore ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V → mrCls Fn ∪ ran Moore ) |
| 3 | mreunirn | ⊢ ( 𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) ) | |
| 4 | mrcflem | ⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) | |
| 5 | fssxp | ⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
| 7 | vuniex | ⊢ ∪ 𝑐 ∈ V | |
| 8 | 7 | pwex | ⊢ 𝒫 ∪ 𝑐 ∈ V |
| 9 | vex | ⊢ 𝑐 ∈ V | |
| 10 | 8 9 | xpex | ⊢ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V |
| 11 | ssexg | ⊢ ( ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∧ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) | |
| 12 | 6 10 11 | sylancl | ⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
| 13 | 3 12 | sylbi | ⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
| 14 | 2 13 | mprg | ⊢ mrCls Fn ∪ ran Moore |