This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mrcflem | |- ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> C e. ( Moore ` X ) ) |
|
| 2 | ssrab2 | |- { s e. C | x C_ s } C_ C |
|
| 3 | 2 | a1i | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> { s e. C | x C_ s } C_ C ) |
| 4 | sseq2 | |- ( s = X -> ( x C_ s <-> x C_ X ) ) |
|
| 5 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 6 | 5 | adantr | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> X e. C ) |
| 7 | elpwi | |- ( x e. ~P X -> x C_ X ) |
|
| 8 | 7 | adantl | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> x C_ X ) |
| 9 | 4 6 8 | elrabd | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> X e. { s e. C | x C_ s } ) |
| 10 | 9 | ne0d | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> { s e. C | x C_ s } =/= (/) ) |
| 11 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ { s e. C | x C_ s } C_ C /\ { s e. C | x C_ s } =/= (/) ) -> |^| { s e. C | x C_ s } e. C ) |
|
| 12 | 1 3 10 11 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> |^| { s e. C | x C_ s } e. C ) |
| 13 | 12 | fmpttd | |- ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) |