This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019) (Revised by AV, 23-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptnn0fsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| mptnn0fsupp.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) | ||
| mptnn0fsuppr.s | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) | ||
| Assertion | mptnn0fsuppr | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| 2 | mptnn0fsupp.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) | |
| 3 | mptnn0fsuppr.s | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) | |
| 4 | fsuppimp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 → ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) ) | |
| 5 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) | |
| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 11 | 1 | elexd | ⊢ ( 𝜑 → 0 ∈ V ) |
| 12 | 8 10 11 | 3jca | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) ) |
| 14 | suppvalfn | ⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) |
| 16 | simpr | ⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) | |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 19 | rspcsbela | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 21 | 6 | fvmpts | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 22 | 16 20 21 | syl2anc | ⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 23 | 22 | neeq1d | ⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) |
| 24 | 23 | rabbidva | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ) |
| 25 | 15 24 | eqtrd | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ) |
| 26 | 25 | eleq1d | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ↔ { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 27 | 26 | biimpd | ⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 28 | 27 | expcom | ⊢ ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) → ( 𝜑 → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) ) |
| 29 | 28 | com23 | ⊢ ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) ) |
| 30 | 29 | imp | ⊢ ( ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 31 | 4 30 | syl | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 32 | 3 31 | mpcom | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) |
| 33 | rabssnn0fi | ⊢ ( { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) | |
| 34 | nne | ⊢ ( ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) | |
| 35 | 34 | imbi2i | ⊢ ( ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 36 | 35 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 37 | 36 | rexbii | ⊢ ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 38 | 33 37 | bitri | ⊢ ( { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 39 | 32 38 | sylib | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |