This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019) (Revised by AV, 23-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
||
| mptnn0fsuppr.s | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
||
| Assertion | mptnn0fsuppr | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| 2 | mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
|
| 3 | mptnn0fsuppr.s | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
|
| 4 | fsuppimp | |- ( ( k e. NN0 |-> C ) finSupp .0. -> ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
|
| 5 | 2 | ralrimiva | |- ( ph -> A. k e. NN0 C e. B ) |
| 6 | eqid | |- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
|
| 7 | 6 | fnmpt | |- ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 8 | 5 7 | syl | |- ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 9 | a1i | |- ( ph -> NN0 e. _V ) |
| 11 | 1 | elexd | |- ( ph -> .0. e. _V ) |
| 12 | 8 10 11 | 3jca | |- ( ph -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
| 14 | suppvalfn | |- ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
|
| 15 | 13 14 | syl | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
| 16 | simpr | |- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> x e. NN0 ) |
|
| 17 | 5 | adantr | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> A. k e. NN0 C e. B ) |
| 18 | 17 | adantr | |- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) |
| 19 | rspcsbela | |- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
| 21 | 6 | fvmpts | |- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 22 | 16 20 21 | syl2anc | |- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 23 | 22 | neeq1d | |- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C =/= .0. ) ) |
| 24 | 23 | rabbidva | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
| 25 | 15 24 | eqtrd | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
| 26 | 25 | eleq1d | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin <-> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 27 | 26 | biimpd | |- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 28 | 27 | expcom | |- ( Fun ( k e. NN0 |-> C ) -> ( ph -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
| 29 | 28 | com23 | |- ( Fun ( k e. NN0 |-> C ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
| 30 | 29 | imp | |- ( ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 31 | 4 30 | syl | |- ( ( k e. NN0 |-> C ) finSupp .0. -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 32 | 3 31 | mpcom | |- ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) |
| 33 | rabssnn0fi | |- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) ) |
|
| 34 | nne | |- ( -. [_ x / k ]_ C =/= .0. <-> [_ x / k ]_ C = .0. ) |
|
| 35 | 34 | imbi2i | |- ( ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 36 | 35 | ralbii | |- ( A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 37 | 36 | rexbii | |- ( E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 38 | 33 37 | bitri | |- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 39 | 32 38 | sylib | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |