This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable condition on D , f , h to remove hypotheses; avoid ax-rep . (Revised by SN, 7-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptmpoopabbrd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| mptmpoopabbrd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ) | ||
| mptmpoopabbrd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) | ||
| mptmpoopabbrd.1 | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝜏 ↔ 𝜃 ) ) | ||
| mptmpoopabbrd.2 | ⊢ ( 𝑔 = 𝐺 → ( 𝜒 ↔ 𝜏 ) ) | ||
| mptmpoopabbrd.m | ⊢ 𝑀 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜒 ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | ||
| Assertion | mptmpoopabbrd | ⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 2 | mptmpoopabbrd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ) | |
| 3 | mptmpoopabbrd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) | |
| 4 | mptmpoopabbrd.1 | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝜏 ↔ 𝜃 ) ) | |
| 5 | mptmpoopabbrd.2 | ⊢ ( 𝑔 = 𝐺 → ( 𝜒 ↔ 𝜏 ) ) | |
| 6 | mptmpoopabbrd.m | ⊢ 𝑀 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜒 ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝐴 ‘ 𝑔 ) = ( 𝐴 ‘ 𝐺 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝐵 ‘ 𝑔 ) = ( 𝐵 ‘ 𝐺 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ 𝐺 ) ) | |
| 10 | 9 | breqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ↔ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) |
| 11 | 5 10 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝜒 ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) ↔ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) ) |
| 12 | 11 | opabbidv | ⊢ ( 𝑔 = 𝐺 → { 〈 𝑓 , ℎ 〉 ∣ ( 𝜒 ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| 13 | 7 8 12 | mpoeq123dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜒 ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) = ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ) |
| 14 | 1 | elexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 15 | fvex | ⊢ ( 𝐴 ‘ 𝐺 ) ∈ V | |
| 16 | fvex | ⊢ ( 𝐵 ‘ 𝐺 ) ∈ V | |
| 17 | fvex | ⊢ ( 𝐷 ‘ 𝐺 ) ∈ V | |
| 18 | 17 | pwex | ⊢ 𝒫 ( 𝐷 ‘ 𝐺 ) ∈ V |
| 19 | simpr | ⊢ ( ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) → 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) | |
| 20 | 19 | ssopab2i | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ⊆ { 〈 𝑓 , ℎ 〉 ∣ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ } |
| 21 | opabss | ⊢ { 〈 𝑓 , ℎ 〉 ∣ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ } ⊆ ( 𝐷 ‘ 𝐺 ) | |
| 22 | 20 21 | sstri | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ⊆ ( 𝐷 ‘ 𝐺 ) |
| 23 | 17 22 | elpwi2 | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ∈ 𝒫 ( 𝐷 ‘ 𝐺 ) |
| 24 | 23 | rgen2w | ⊢ ∀ 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) ∀ 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ∈ 𝒫 ( 𝐷 ‘ 𝐺 ) |
| 25 | 15 16 18 24 | mpoexw | ⊢ ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ∈ V |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ∈ V ) |
| 27 | 6 13 14 26 | fvmptd3 | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐺 ) = ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) ) |
| 28 | 27 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 ) ) |
| 29 | 4 | anbi1d | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ↔ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ) ) |
| 30 | 29 | opabbidv | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| 31 | eqid | ⊢ ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) = ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) | |
| 32 | ancom | ⊢ ( ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) ↔ ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ∧ 𝜃 ) ) | |
| 33 | 32 | opabbii | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } = { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ∧ 𝜃 ) } |
| 34 | opabresex2 | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ∧ 𝜃 ) } ∈ V | |
| 35 | 33 34 | eqeltri | ⊢ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ∈ V |
| 36 | 30 31 35 | ovmpoa | ⊢ ( ( 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ∧ 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) → ( 𝑋 ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| 37 | 2 3 36 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ( 𝑎 ∈ ( 𝐴 ‘ 𝐺 ) , 𝑏 ∈ ( 𝐵 ‘ 𝐺 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝜏 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| 38 | 28 37 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝜃 ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |