This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable condition on D , f , h to remove hypotheses; avoid ax-rep . (Revised by SN, 7-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptmpoopabbrd.g | |- ( ph -> G e. W ) |
|
| mptmpoopabbrd.x | |- ( ph -> X e. ( A ` G ) ) |
||
| mptmpoopabbrd.y | |- ( ph -> Y e. ( B ` G ) ) |
||
| mptmpoopabbrd.1 | |- ( ( a = X /\ b = Y ) -> ( ta <-> th ) ) |
||
| mptmpoopabbrd.2 | |- ( g = G -> ( ch <-> ta ) ) |
||
| mptmpoopabbrd.m | |- M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) ) |
||
| Assertion | mptmpoopabbrd | |- ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrd.g | |- ( ph -> G e. W ) |
|
| 2 | mptmpoopabbrd.x | |- ( ph -> X e. ( A ` G ) ) |
|
| 3 | mptmpoopabbrd.y | |- ( ph -> Y e. ( B ` G ) ) |
|
| 4 | mptmpoopabbrd.1 | |- ( ( a = X /\ b = Y ) -> ( ta <-> th ) ) |
|
| 5 | mptmpoopabbrd.2 | |- ( g = G -> ( ch <-> ta ) ) |
|
| 6 | mptmpoopabbrd.m | |- M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) ) |
|
| 7 | fveq2 | |- ( g = G -> ( A ` g ) = ( A ` G ) ) |
|
| 8 | fveq2 | |- ( g = G -> ( B ` g ) = ( B ` G ) ) |
|
| 9 | fveq2 | |- ( g = G -> ( D ` g ) = ( D ` G ) ) |
|
| 10 | 9 | breqd | |- ( g = G -> ( f ( D ` g ) h <-> f ( D ` G ) h ) ) |
| 11 | 5 10 | anbi12d | |- ( g = G -> ( ( ch /\ f ( D ` g ) h ) <-> ( ta /\ f ( D ` G ) h ) ) ) |
| 12 | 11 | opabbidv | |- ( g = G -> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } = { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) |
| 13 | 7 8 12 | mpoeq123dv | |- ( g = G -> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) |
| 14 | 1 | elexd | |- ( ph -> G e. _V ) |
| 15 | fvex | |- ( A ` G ) e. _V |
|
| 16 | fvex | |- ( B ` G ) e. _V |
|
| 17 | fvex | |- ( D ` G ) e. _V |
|
| 18 | 17 | pwex | |- ~P ( D ` G ) e. _V |
| 19 | simpr | |- ( ( ta /\ f ( D ` G ) h ) -> f ( D ` G ) h ) |
|
| 20 | 19 | ssopab2i | |- { <. f , h >. | ( ta /\ f ( D ` G ) h ) } C_ { <. f , h >. | f ( D ` G ) h } |
| 21 | opabss | |- { <. f , h >. | f ( D ` G ) h } C_ ( D ` G ) |
|
| 22 | 20 21 | sstri | |- { <. f , h >. | ( ta /\ f ( D ` G ) h ) } C_ ( D ` G ) |
| 23 | 17 22 | elpwi2 | |- { <. f , h >. | ( ta /\ f ( D ` G ) h ) } e. ~P ( D ` G ) |
| 24 | 23 | rgen2w | |- A. a e. ( A ` G ) A. b e. ( B ` G ) { <. f , h >. | ( ta /\ f ( D ` G ) h ) } e. ~P ( D ` G ) |
| 25 | 15 16 18 24 | mpoexw | |- ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V |
| 26 | 25 | a1i | |- ( ph -> ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V ) |
| 27 | 6 13 14 26 | fvmptd3 | |- ( ph -> ( M ` G ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) |
| 28 | 27 | oveqd | |- ( ph -> ( X ( M ` G ) Y ) = ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) ) |
| 29 | 4 | anbi1d | |- ( ( a = X /\ b = Y ) -> ( ( ta /\ f ( D ` G ) h ) <-> ( th /\ f ( D ` G ) h ) ) ) |
| 30 | 29 | opabbidv | |- ( ( a = X /\ b = Y ) -> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
| 31 | eqid | |- ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) |
|
| 32 | ancom | |- ( ( th /\ f ( D ` G ) h ) <-> ( f ( D ` G ) h /\ th ) ) |
|
| 33 | 32 | opabbii | |- { <. f , h >. | ( th /\ f ( D ` G ) h ) } = { <. f , h >. | ( f ( D ` G ) h /\ th ) } |
| 34 | opabresex2 | |- { <. f , h >. | ( f ( D ` G ) h /\ th ) } e. _V |
|
| 35 | 33 34 | eqeltri | |- { <. f , h >. | ( th /\ f ( D ` G ) h ) } e. _V |
| 36 | 30 31 35 | ovmpoa | |- ( ( X e. ( A ` G ) /\ Y e. ( B ` G ) ) -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
| 37 | 2 3 36 | syl2anc | |- ( ph -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
| 38 | 28 37 | eqtrd | |- ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |