This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl0.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| evl0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl0.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | ||
| evl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | ||
| evl0.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| evl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evl0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | evl0 | ⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑂 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl0.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| 2 | evl0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | evl0.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | |
| 4 | evl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | |
| 5 | evl0.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | evl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | evl0.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 9 | 7 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 | 3 8 4 5 6 9 | mplascl0 | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = 0 ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( 𝑄 ‘ 0 ) ) |
| 12 | 2 4 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ 𝐵 ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) |
| 14 | 1 3 2 8 6 7 13 | evlsca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑂 } ) ) |
| 15 | 11 14 | eqtr3d | ⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑂 } ) ) |