This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| Assertion | mpllvec | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝑃 ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 3 | 1 | mpllmod | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝑃 ∈ LMod ) |
| 5 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝐼 ∈ 𝑉 ) | |
| 6 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ DivRing ) | |
| 7 | 1 5 6 | mplsca | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 8 | 7 6 | eqeltrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → ( Scalar ‘ 𝑃 ) ∈ DivRing ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 10 | 9 | islvec | ⊢ ( 𝑃 ∈ LVec ↔ ( 𝑃 ∈ LMod ∧ ( Scalar ‘ 𝑃 ) ∈ DivRing ) ) |
| 11 | 4 8 10 | sylanbrc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing ) → 𝑃 ∈ LVec ) |