This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | |- P = ( I mPoly R ) |
|
| Assertion | mpllvec | |- ( ( I e. V /\ R e. DivRing ) -> P e. LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | |- P = ( I mPoly R ) |
|
| 2 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 3 | 1 | mpllmod | |- ( ( I e. V /\ R e. Ring ) -> P e. LMod ) |
| 4 | 2 3 | sylan2 | |- ( ( I e. V /\ R e. DivRing ) -> P e. LMod ) |
| 5 | simpl | |- ( ( I e. V /\ R e. DivRing ) -> I e. V ) |
|
| 6 | simpr | |- ( ( I e. V /\ R e. DivRing ) -> R e. DivRing ) |
|
| 7 | 1 5 6 | mplsca | |- ( ( I e. V /\ R e. DivRing ) -> R = ( Scalar ` P ) ) |
| 8 | 7 6 | eqeltrrd | |- ( ( I e. V /\ R e. DivRing ) -> ( Scalar ` P ) e. DivRing ) |
| 9 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 10 | 9 | islvec | |- ( P e. LVec <-> ( P e. LMod /\ ( Scalar ` P ) e. DivRing ) ) |
| 11 | 4 8 10 | sylanbrc | |- ( ( I e. V /\ R e. DivRing ) -> P e. LVec ) |