This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moriotass | |- ( ( A C_ B /\ E. x e. A ph /\ E* x e. B ph ) -> ( iota_ x e. A ph ) = ( iota_ x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv | |- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) ) |
|
| 2 | 1 | imp | |- ( ( A C_ B /\ E. x e. A ph ) -> E. x e. B ph ) |
| 3 | 2 | 3adant3 | |- ( ( A C_ B /\ E. x e. A ph /\ E* x e. B ph ) -> E. x e. B ph ) |
| 4 | simp3 | |- ( ( A C_ B /\ E. x e. A ph /\ E* x e. B ph ) -> E* x e. B ph ) |
|
| 5 | reu5 | |- ( E! x e. B ph <-> ( E. x e. B ph /\ E* x e. B ph ) ) |
|
| 6 | 3 4 5 | sylanbrc | |- ( ( A C_ B /\ E. x e. A ph /\ E* x e. B ph ) -> E! x e. B ph ) |
| 7 | riotass | |- ( ( A C_ B /\ E. x e. A ph /\ E! x e. B ph ) -> ( iota_ x e. A ph ) = ( iota_ x e. B ph ) ) |
|
| 8 | 6 7 | syld3an3 | |- ( ( A C_ B /\ E. x e. A ph /\ E* x e. B ph ) -> ( iota_ x e. A ph ) = ( iota_ x e. B ph ) ) |