This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mof0 | ⊢ ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | eqeq2 | ⊢ ( 𝑔 = ∅ → ( 𝑓 = 𝑔 ↔ 𝑓 = ∅ ) ) | |
| 3 | 2 | imbi2d | ⊢ ( 𝑔 = ∅ → ( ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ↔ ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) ) ) |
| 4 | 3 | albidv | ⊢ ( 𝑔 = ∅ → ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) ) ) |
| 5 | 1 4 | spcev | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) → ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ) |
| 6 | f00 | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 7 | 6 | simplbi | ⊢ ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) |
| 8 | 5 7 | mpg | ⊢ ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) |
| 9 | df-mo | ⊢ ( ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ ↔ ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ) | |
| 10 | 8 9 | mpbir | ⊢ ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ |