This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mof0 | |- E* f f : A --> (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | eqeq2 | |- ( g = (/) -> ( f = g <-> f = (/) ) ) |
|
| 3 | 2 | imbi2d | |- ( g = (/) -> ( ( f : A --> (/) -> f = g ) <-> ( f : A --> (/) -> f = (/) ) ) ) |
| 4 | 3 | albidv | |- ( g = (/) -> ( A. f ( f : A --> (/) -> f = g ) <-> A. f ( f : A --> (/) -> f = (/) ) ) ) |
| 5 | 1 4 | spcev | |- ( A. f ( f : A --> (/) -> f = (/) ) -> E. g A. f ( f : A --> (/) -> f = g ) ) |
| 6 | f00 | |- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
|
| 7 | 6 | simplbi | |- ( f : A --> (/) -> f = (/) ) |
| 8 | 5 7 | mpg | |- E. g A. f ( f : A --> (/) -> f = g ) |
| 9 | df-mo | |- ( E* f f : A --> (/) <-> E. g A. f ( f : A --> (/) -> f = g ) ) |
|
| 10 | 8 9 | mpbir | |- E* f f : A --> (/) |