This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014) (Revised by Mario Carneiro, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modxai.1 | ⊢ 𝑁 ∈ ℕ | |
| modxai.2 | ⊢ 𝐴 ∈ ℕ | ||
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| modxai.4 | ⊢ 𝐷 ∈ ℤ | ||
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 | ||
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 | ||
| modxai.7 | ⊢ 𝐶 ∈ ℕ0 | ||
| modxai.8 | ⊢ 𝐿 ∈ ℕ0 | ||
| modxai.11 | ⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | ||
| modxai.12 | ⊢ ( ( 𝐴 ↑ 𝐶 ) mod 𝑁 ) = ( 𝐿 mod 𝑁 ) | ||
| modxai.9 | ⊢ ( 𝐵 + 𝐶 ) = 𝐸 | ||
| modxai.10 | ⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐿 ) | ||
| Assertion | modxai | ⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | ⊢ 𝑁 ∈ ℕ | |
| 2 | modxai.2 | ⊢ 𝐴 ∈ ℕ | |
| 3 | modxai.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | modxai.4 | ⊢ 𝐷 ∈ ℤ | |
| 5 | modxai.5 | ⊢ 𝐾 ∈ ℕ0 | |
| 6 | modxai.6 | ⊢ 𝑀 ∈ ℕ0 | |
| 7 | modxai.7 | ⊢ 𝐶 ∈ ℕ0 | |
| 8 | modxai.8 | ⊢ 𝐿 ∈ ℕ0 | |
| 9 | modxai.11 | ⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) | |
| 10 | modxai.12 | ⊢ ( ( 𝐴 ↑ 𝐶 ) mod 𝑁 ) = ( 𝐿 mod 𝑁 ) | |
| 11 | modxai.9 | ⊢ ( 𝐵 + 𝐶 ) = 𝐸 | |
| 12 | modxai.10 | ⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐿 ) | |
| 13 | 11 | oveq2i | ⊢ ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( 𝐴 ↑ 𝐸 ) |
| 14 | 2 | nncni | ⊢ 𝐴 ∈ ℂ |
| 15 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) ) | |
| 16 | 14 3 7 15 | mp3an | ⊢ ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) |
| 17 | 13 16 | eqtr3i | ⊢ ( 𝐴 ↑ 𝐸 ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) |
| 18 | 17 | oveq1i | ⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) |
| 19 | nnexpcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ℕ ) | |
| 20 | 2 3 19 | mp2an | ⊢ ( 𝐴 ↑ 𝐵 ) ∈ ℕ |
| 21 | 20 | nnzi | ⊢ ( 𝐴 ↑ 𝐵 ) ∈ ℤ |
| 22 | 21 | a1i | ⊢ ( ⊤ → ( 𝐴 ↑ 𝐵 ) ∈ ℤ ) |
| 23 | 5 | nn0zi | ⊢ 𝐾 ∈ ℤ |
| 24 | 23 | a1i | ⊢ ( ⊤ → 𝐾 ∈ ℤ ) |
| 25 | nnexpcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐶 ) ∈ ℕ ) | |
| 26 | 2 7 25 | mp2an | ⊢ ( 𝐴 ↑ 𝐶 ) ∈ ℕ |
| 27 | 26 | nnzi | ⊢ ( 𝐴 ↑ 𝐶 ) ∈ ℤ |
| 28 | 27 | a1i | ⊢ ( ⊤ → ( 𝐴 ↑ 𝐶 ) ∈ ℤ ) |
| 29 | 8 | nn0zi | ⊢ 𝐿 ∈ ℤ |
| 30 | 29 | a1i | ⊢ ( ⊤ → 𝐿 ∈ ℤ ) |
| 31 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 32 | 1 31 | ax-mp | ⊢ 𝑁 ∈ ℝ+ |
| 33 | 32 | a1i | ⊢ ( ⊤ → 𝑁 ∈ ℝ+ ) |
| 34 | 9 | a1i | ⊢ ( ⊤ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) |
| 35 | 10 | a1i | ⊢ ( ⊤ → ( ( 𝐴 ↑ 𝐶 ) mod 𝑁 ) = ( 𝐿 mod 𝑁 ) ) |
| 36 | 22 24 28 30 33 34 35 | modmul12d | ⊢ ( ⊤ → ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝐾 · 𝐿 ) mod 𝑁 ) ) |
| 37 | 36 | mptru | ⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝐾 · 𝐿 ) mod 𝑁 ) |
| 38 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
| 39 | 4 38 | ax-mp | ⊢ 𝐷 ∈ ℂ |
| 40 | 1 | nncni | ⊢ 𝑁 ∈ ℂ |
| 41 | 39 40 | mulcli | ⊢ ( 𝐷 · 𝑁 ) ∈ ℂ |
| 42 | 6 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 43 | 41 42 | addcomi | ⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝑀 + ( 𝐷 · 𝑁 ) ) |
| 44 | 12 43 | eqtr3i | ⊢ ( 𝐾 · 𝐿 ) = ( 𝑀 + ( 𝐷 · 𝑁 ) ) |
| 45 | 44 | oveq1i | ⊢ ( ( 𝐾 · 𝐿 ) mod 𝑁 ) = ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) |
| 46 | 37 45 | eqtri | ⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) |
| 47 | 6 | nn0rei | ⊢ 𝑀 ∈ ℝ |
| 48 | modcyc | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ ) → ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) ) | |
| 49 | 47 32 4 48 | mp3an | ⊢ ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| 50 | 46 49 | eqtri | ⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| 51 | 18 50 | eqtri | ⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |