This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014) (Revised by Mario Carneiro, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modxai.1 | |- N e. NN |
|
| modxai.2 | |- A e. NN |
||
| modxai.3 | |- B e. NN0 |
||
| modxai.4 | |- D e. ZZ |
||
| modxai.5 | |- K e. NN0 |
||
| modxai.6 | |- M e. NN0 |
||
| modxai.7 | |- C e. NN0 |
||
| modxai.8 | |- L e. NN0 |
||
| modxai.11 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
||
| modxai.12 | |- ( ( A ^ C ) mod N ) = ( L mod N ) |
||
| modxai.9 | |- ( B + C ) = E |
||
| modxai.10 | |- ( ( D x. N ) + M ) = ( K x. L ) |
||
| Assertion | modxai | |- ( ( A ^ E ) mod N ) = ( M mod N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | |- N e. NN |
|
| 2 | modxai.2 | |- A e. NN |
|
| 3 | modxai.3 | |- B e. NN0 |
|
| 4 | modxai.4 | |- D e. ZZ |
|
| 5 | modxai.5 | |- K e. NN0 |
|
| 6 | modxai.6 | |- M e. NN0 |
|
| 7 | modxai.7 | |- C e. NN0 |
|
| 8 | modxai.8 | |- L e. NN0 |
|
| 9 | modxai.11 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
|
| 10 | modxai.12 | |- ( ( A ^ C ) mod N ) = ( L mod N ) |
|
| 11 | modxai.9 | |- ( B + C ) = E |
|
| 12 | modxai.10 | |- ( ( D x. N ) + M ) = ( K x. L ) |
|
| 13 | 11 | oveq2i | |- ( A ^ ( B + C ) ) = ( A ^ E ) |
| 14 | 2 | nncni | |- A e. CC |
| 15 | expadd | |- ( ( A e. CC /\ B e. NN0 /\ C e. NN0 ) -> ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) ) |
|
| 16 | 14 3 7 15 | mp3an | |- ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) |
| 17 | 13 16 | eqtr3i | |- ( A ^ E ) = ( ( A ^ B ) x. ( A ^ C ) ) |
| 18 | 17 | oveq1i | |- ( ( A ^ E ) mod N ) = ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) |
| 19 | nnexpcl | |- ( ( A e. NN /\ B e. NN0 ) -> ( A ^ B ) e. NN ) |
|
| 20 | 2 3 19 | mp2an | |- ( A ^ B ) e. NN |
| 21 | 20 | nnzi | |- ( A ^ B ) e. ZZ |
| 22 | 21 | a1i | |- ( T. -> ( A ^ B ) e. ZZ ) |
| 23 | 5 | nn0zi | |- K e. ZZ |
| 24 | 23 | a1i | |- ( T. -> K e. ZZ ) |
| 25 | nnexpcl | |- ( ( A e. NN /\ C e. NN0 ) -> ( A ^ C ) e. NN ) |
|
| 26 | 2 7 25 | mp2an | |- ( A ^ C ) e. NN |
| 27 | 26 | nnzi | |- ( A ^ C ) e. ZZ |
| 28 | 27 | a1i | |- ( T. -> ( A ^ C ) e. ZZ ) |
| 29 | 8 | nn0zi | |- L e. ZZ |
| 30 | 29 | a1i | |- ( T. -> L e. ZZ ) |
| 31 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 32 | 1 31 | ax-mp | |- N e. RR+ |
| 33 | 32 | a1i | |- ( T. -> N e. RR+ ) |
| 34 | 9 | a1i | |- ( T. -> ( ( A ^ B ) mod N ) = ( K mod N ) ) |
| 35 | 10 | a1i | |- ( T. -> ( ( A ^ C ) mod N ) = ( L mod N ) ) |
| 36 | 22 24 28 30 33 34 35 | modmul12d | |- ( T. -> ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) ) |
| 37 | 36 | mptru | |- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) |
| 38 | zcn | |- ( D e. ZZ -> D e. CC ) |
|
| 39 | 4 38 | ax-mp | |- D e. CC |
| 40 | 1 | nncni | |- N e. CC |
| 41 | 39 40 | mulcli | |- ( D x. N ) e. CC |
| 42 | 6 | nn0cni | |- M e. CC |
| 43 | 41 42 | addcomi | |- ( ( D x. N ) + M ) = ( M + ( D x. N ) ) |
| 44 | 12 43 | eqtr3i | |- ( K x. L ) = ( M + ( D x. N ) ) |
| 45 | 44 | oveq1i | |- ( ( K x. L ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
| 46 | 37 45 | eqtri | |- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
| 47 | 6 | nn0rei | |- M e. RR |
| 48 | modcyc | |- ( ( M e. RR /\ N e. RR+ /\ D e. ZZ ) -> ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) ) |
|
| 49 | 47 32 4 48 | mp3an | |- ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) |
| 50 | 46 49 | eqtri | |- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( M mod N ) |
| 51 | 18 50 | eqtri | |- ( ( A ^ E ) mod N ) = ( M mod N ) |