This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modm1p1mod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | modaddmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) | |
| 3 | 1 2 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
| 4 | 3 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) ) |
| 6 | oveq1 | ⊢ ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( 𝐴 mod 𝑀 ) + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) ) |
| 8 | rpcn | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) | |
| 9 | npcan1 | ⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑀 ∈ ℝ+ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑀 ∈ ℝ+ → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = ( 𝑀 mod 𝑀 ) ) |
| 12 | modid0 | ⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 mod 𝑀 ) = 0 ) | |
| 13 | 11 12 | eqtrd | ⊢ ( 𝑀 ∈ ℝ+ → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = 0 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝑀 − 1 ) + 1 ) mod 𝑀 ) = 0 ) |
| 15 | 7 14 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = 0 ) |
| 16 | 5 15 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 0 ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝑀 − 1 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 0 ) ) |