This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modltm1p1mod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 2 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 1 ∈ ℝ ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 4 | 1 2 3 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 6 | modaddmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
| 8 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 9 | peano2re | ⊢ ( ( 𝐴 mod 𝑀 ) ∈ ℝ → ( ( 𝐴 mod 𝑀 ) + 1 ) ∈ ℝ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) + 1 ) ∈ ℝ ) |
| 11 | 10 3 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 13 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ∈ ℝ ) | |
| 14 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝑀 ) ) | |
| 15 | 8 | lep1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ≤ ( ( 𝐴 mod 𝑀 ) + 1 ) ) |
| 16 | 13 8 10 14 15 | letrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ( 𝐴 mod 𝑀 ) + 1 ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → 0 ≤ ( ( 𝐴 mod 𝑀 ) + 1 ) ) |
| 18 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 20 | 8 2 19 | ltaddsubd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) < 𝑀 ↔ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) ) |
| 21 | 20 | biimp3ar | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( 𝐴 mod 𝑀 ) + 1 ) < 𝑀 ) |
| 22 | modid | ⊢ ( ( ( ( ( 𝐴 mod 𝑀 ) + 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ ( ( 𝐴 mod 𝑀 ) + 1 ) ∧ ( ( 𝐴 mod 𝑀 ) + 1 ) < 𝑀 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) + 1 ) ) | |
| 23 | 12 17 21 22 | syl12anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) + 1 ) ) |
| 24 | 7 23 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ ( 𝐴 mod 𝑀 ) < ( 𝑀 − 1 ) ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) + 1 ) ) |