This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modm1div | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = 1 ↔ 𝑁 ∥ ( 𝐴 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) | |
| 2 | eluz2gt1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 1 < 𝑁 ) |
| 4 | 1mod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) | |
| 5 | 4 | eqcomd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → 1 = ( 1 mod 𝑁 ) ) |
| 6 | 1 3 5 | syl2an2r | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 1 = ( 1 mod 𝑁 ) ) |
| 7 | 6 | eqeq2d | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = 1 ↔ ( 𝐴 mod 𝑁 ) = ( 1 mod 𝑁 ) ) ) |
| 8 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 𝑁 ∈ ℕ ) |
| 10 | simpr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 11 | 1zzd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 1 ∈ ℤ ) | |
| 12 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − 1 ) ) ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − 1 ) ) ) |
| 14 | 7 13 | bitrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = 1 ↔ 𝑁 ∥ ( 𝐴 − 1 ) ) ) |