This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmulmodb | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝐵 · 𝐶 ) ↔ ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
| 4 | zmulcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) | |
| 5 | 4 | zcnd | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 8 | 3 7 | pncan2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) − 𝐴 ) = ( 𝐵 · 𝐶 ) ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐵 · 𝐶 ) = ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) − 𝐴 ) ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝐵 · 𝐶 ) ↔ 𝑁 ∥ ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) − 𝐴 ) ) ) |
| 11 | simpl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝑁 ∈ ℕ ) | |
| 12 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
| 13 | 1 12 | zaddcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 + ( 𝐵 · 𝐶 ) ) ∈ ℤ ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 + ( 𝐵 · 𝐶 ) ) ∈ ℤ ) |
| 15 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∈ ℤ ) |
| 16 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 + ( 𝐵 · 𝐶 ) ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) − 𝐴 ) ) ) | |
| 17 | 11 14 15 16 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) − 𝐴 ) ) ) |
| 18 | 10 17 | bitr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝐵 · 𝐶 ) ↔ ( ( 𝐴 + ( 𝐵 · 𝐶 ) ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) ) ) |