This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modirr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐴 / 𝐵 ) ∈ ( ℝ ∖ ℚ ) ) → ( 𝐴 mod 𝐵 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ( ℝ ∖ ℚ ) ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 / 𝐵 ) ∈ ℚ ) ) | |
| 2 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = 0 ) ) |
| 4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 6 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 8 | refldivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 9 | 7 8 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℂ ) |
| 11 | 5 10 | subeq0ad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = 0 ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 12 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 13 | reflcl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 14 | 13 | recnd | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 16 | rpcnne0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 18 | divmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 19 | 5 15 17 18 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 20 | eqcom | ⊢ ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) | |
| 21 | 19 20 | bitr3di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) ) |
| 22 | 3 11 21 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) ) |
| 23 | flidz | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 24 | zq | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℤ → ( 𝐴 / 𝐵 ) ∈ ℚ ) | |
| 25 | 23 24 | biimtrdi | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) ) |
| 26 | 12 25 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) ) |
| 27 | 22 26 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 → ( 𝐴 / 𝐵 ) ∈ ℚ ) ) |
| 28 | 27 | necon3bd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ¬ ( 𝐴 / 𝐵 ) ∈ ℚ → ( 𝐴 mod 𝐵 ) ≠ 0 ) ) |
| 29 | 28 | adantld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 / 𝐵 ) ∈ ℚ ) → ( 𝐴 mod 𝐵 ) ≠ 0 ) ) |
| 30 | 1 29 | biimtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ∈ ( ℝ ∖ ℚ ) → ( 𝐴 mod 𝐵 ) ≠ 0 ) ) |
| 31 | 30 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐴 / 𝐵 ) ∈ ( ℝ ∖ ℚ ) ) → ( 𝐴 mod 𝐵 ) ≠ 0 ) |