This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | modaddid.i | ⊢ 𝐼 = ( 0 ..^ 𝑁 ) | |
| Assertion | modaddid | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modaddid.i | ⊢ 𝐼 = ( 0 ..^ 𝑁 ) | |
| 2 | elfzoelz | ⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → 𝑋 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → 𝑋 ∈ ℝ ) |
| 4 | 3 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ℝ ) |
| 5 | elfzoelz | ⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℤ ) | |
| 6 | 5 | zred | ⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℝ ) |
| 7 | 6 1 | eleq2s | ⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℝ ) |
| 8 | 4 7 | anim12i | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) |
| 10 | eluz3nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) | |
| 11 | 10 | nnrpd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ+ ) |
| 12 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 13 | 11 12 | anim12ci | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 14 | modaddb | ⊢ ( ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ∧ ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ) ) | |
| 15 | 9 13 14 | 3imp3i2an | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ) ) |
| 16 | zmodidfzoimp | ⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → ( 𝑋 mod 𝑁 ) = 𝑋 ) | |
| 17 | 16 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐼 → ( 𝑋 mod 𝑁 ) = 𝑋 ) |
| 18 | zmodidfzoimp | ⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → ( 𝑌 mod 𝑁 ) = 𝑌 ) | |
| 19 | 18 1 | eleq2s | ⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 mod 𝑁 ) = 𝑌 ) |
| 20 | 17 19 | eqeqan12d | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |
| 22 | 15 21 | bitr3d | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |