This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | mndvass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝑋 ∘f + 𝑌 ) ∘f + 𝑍 ) = ( 𝑋 ∘f + ( 𝑌 ∘f + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mndvcl.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | elmapex | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) | |
| 4 | 3 | simprd | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝐼 ∈ V ) |
| 7 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 10 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
| 13 | elmapi | ⊢ ( 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑍 : 𝐼 ⟶ 𝐵 ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 16 | 1 2 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 17 | 16 | adantlr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 18 | 6 9 12 15 17 | caofass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝑋 ∘f + 𝑌 ) ∘f + 𝑍 ) = ( 𝑋 ∘f + ( 𝑌 ∘f + 𝑍 ) ) ) |