This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Monoids as categories
mndtcid
Metamath Proof Explorer
Description: The identity morphism, or identity arrow, of the category built from a
monoid is the identity element of the monoid. (Contributed by Zhi
Wang , 22-Sep-2024)
Ref
Expression
Hypotheses
mndtccat.c
⊢ φ → C = MndToCat ⁡ M
mndtccat.m
⊢ φ → M ∈ Mnd
mndtcid.b
⊢ φ → B = Base C
mndtcid.x
⊢ φ → X ∈ B
mndtcid.i
⊢ φ → 1 ˙ = Id ⁡ C
Assertion
mndtcid
⊢ φ → 1 ˙ ⁡ X = 0 M
Proof
Step
Hyp
Ref
Expression
1
mndtccat.c
⊢ φ → C = MndToCat ⁡ M
2
mndtccat.m
⊢ φ → M ∈ Mnd
3
mndtcid.b
⊢ φ → B = Base C
4
mndtcid.x
⊢ φ → X ∈ B
5
mndtcid.i
⊢ φ → 1 ˙ = Id ⁡ C
6
1 2
mndtccatid
⊢ φ → C ∈ Cat ∧ Id ⁡ C = x ∈ Base C ⟼ 0 M
7
6
simprd
⊢ φ → Id ⁡ C = x ∈ Base C ⟼ 0 M
8
5 7
eqtrd
⊢ φ → 1 ˙ = x ∈ Base C ⟼ 0 M
9
eqidd
⊢ φ ∧ x = X → 0 M = 0 M
10
4 3
eleqtrd
⊢ φ → X ∈ Base C
11
fvexd
⊢ φ → 0 M ∈ V
12
8 9 10 11
fvmptd
⊢ φ → 1 ˙ ⁡ X = 0 M