This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015) (Revisd by AV, 28-Jan-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmplusf.1 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| mgmplusf.2 | ⊢ ⨣ = ( +𝑓 ‘ 𝑀 ) | ||
| Assertion | mgmplusf | ⊢ ( 𝑀 ∈ Mgm → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmplusf.1 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | mgmplusf.2 | ⊢ ⨣ = ( +𝑓 ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 4 | 1 3 | mgmcl | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 6 | 5 | ralrimivva | ⊢ ( 𝑀 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 7 | 1 3 2 | plusffval | ⊢ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 8 | 7 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ↔ ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 9 | 6 8 | sylib | ⊢ ( 𝑀 ∈ Mgm → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |