This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015) (Revisd by AV, 28-Jan-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgmplusf.1 | |- B = ( Base ` M ) |
|
| mgmplusf.2 | |- .+^ = ( +f ` M ) |
||
| Assertion | mgmplusf | |- ( M e. Mgm -> .+^ : ( B X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmplusf.1 | |- B = ( Base ` M ) |
|
| 2 | mgmplusf.2 | |- .+^ = ( +f ` M ) |
|
| 3 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 4 | 1 3 | mgmcl | |- ( ( M e. Mgm /\ x e. B /\ y e. B ) -> ( x ( +g ` M ) y ) e. B ) |
| 5 | 4 | 3expb | |- ( ( M e. Mgm /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 6 | 5 | ralrimivva | |- ( M e. Mgm -> A. x e. B A. y e. B ( x ( +g ` M ) y ) e. B ) |
| 7 | 1 3 2 | plusffval | |- .+^ = ( x e. B , y e. B |-> ( x ( +g ` M ) y ) ) |
| 8 | 7 | fmpo | |- ( A. x e. B A. y e. B ( x ( +g ` M ) y ) e. B <-> .+^ : ( B X. B ) --> B ) |
| 9 | 6 8 | sylib | |- ( M e. Mgm -> .+^ : ( B X. B ) --> B ) |