This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mgmidmo | |- E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) -> ( u .+ x ) = x ) |
|
| 2 | 1 | ralimi | |- ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) -> A. x e. B ( u .+ x ) = x ) |
| 3 | simpr | |- ( ( ( w .+ x ) = x /\ ( x .+ w ) = x ) -> ( x .+ w ) = x ) |
|
| 4 | 3 | ralimi | |- ( A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) -> A. x e. B ( x .+ w ) = x ) |
| 5 | oveq1 | |- ( x = u -> ( x .+ w ) = ( u .+ w ) ) |
|
| 6 | id | |- ( x = u -> x = u ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = u -> ( ( x .+ w ) = x <-> ( u .+ w ) = u ) ) |
| 8 | 7 | rspcva | |- ( ( u e. B /\ A. x e. B ( x .+ w ) = x ) -> ( u .+ w ) = u ) |
| 9 | oveq2 | |- ( x = w -> ( u .+ x ) = ( u .+ w ) ) |
|
| 10 | id | |- ( x = w -> x = w ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = w -> ( ( u .+ x ) = x <-> ( u .+ w ) = w ) ) |
| 12 | 11 | rspcva | |- ( ( w e. B /\ A. x e. B ( u .+ x ) = x ) -> ( u .+ w ) = w ) |
| 13 | 8 12 | sylan9req | |- ( ( ( u e. B /\ A. x e. B ( x .+ w ) = x ) /\ ( w e. B /\ A. x e. B ( u .+ x ) = x ) ) -> u = w ) |
| 14 | 13 | an42s | |- ( ( ( u e. B /\ w e. B ) /\ ( A. x e. B ( u .+ x ) = x /\ A. x e. B ( x .+ w ) = x ) ) -> u = w ) |
| 15 | 14 | ex | |- ( ( u e. B /\ w e. B ) -> ( ( A. x e. B ( u .+ x ) = x /\ A. x e. B ( x .+ w ) = x ) -> u = w ) ) |
| 16 | 2 4 15 | syl2ani | |- ( ( u e. B /\ w e. B ) -> ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) ) |
| 17 | 16 | rgen2 | |- A. u e. B A. w e. B ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) |
| 18 | oveq1 | |- ( u = w -> ( u .+ x ) = ( w .+ x ) ) |
|
| 19 | 18 | eqeq1d | |- ( u = w -> ( ( u .+ x ) = x <-> ( w .+ x ) = x ) ) |
| 20 | 19 | ovanraleqv | |- ( u = w -> ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) ) |
| 21 | 20 | rmo4 | |- ( E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> A. u e. B A. w e. B ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) ) |
| 22 | 17 21 | mpbir | |- E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) |