This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnex.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | mopnex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnex.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) | |
| 4 | 3 | stdbdmet | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ+ ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 5 | 2 4 | mpan2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 6 | 1xr | ⊢ 1 ∈ ℝ* | |
| 7 | 0lt1 | ⊢ 0 < 1 | |
| 8 | 3 1 | stdbdmopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ* ∧ 0 < 1 ) → 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) |
| 9 | 6 7 8 | mp3an23 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑑 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) → ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) | |
| 11 | 10 | rspceeqv | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |
| 12 | 5 9 11 | syl2anc | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |