This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| metdcn.2 | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | metdcn | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | metdcn.2 | |- K = ( TopOpen ` CCfld ) |
|
| 3 | 2 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 4 | 3 | oveq2i | |- ( ( J tX J ) Cn ( topGen ` ran (,) ) ) = ( ( J tX J ) Cn ( K |`t RR ) ) |
| 5 | 2 | cnfldtop | |- K e. Top |
| 6 | cnrest2r | |- ( K e. Top -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) |
| 8 | 4 7 | eqsstri | |- ( ( J tX J ) Cn ( topGen ` ran (,) ) ) C_ ( ( J tX J ) Cn K ) |
| 9 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 10 | 1 9 | metdcn2 | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( topGen ` ran (,) ) ) ) |
| 11 | 8 10 | sselid | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |