This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mat | ⊢ Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmat | ⊢ Mat | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cfn | ⊢ Fin | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | cvv | ⊢ V | |
| 5 | 3 | cv | ⊢ 𝑟 |
| 6 | cfrlm | ⊢ freeLMod | |
| 7 | 1 | cv | ⊢ 𝑛 |
| 8 | 7 7 | cxp | ⊢ ( 𝑛 × 𝑛 ) |
| 9 | 5 8 6 | co | ⊢ ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) |
| 10 | csts | ⊢ sSet | |
| 11 | cmulr | ⊢ .r | |
| 12 | cnx | ⊢ ndx | |
| 13 | 12 11 | cfv | ⊢ ( .r ‘ ndx ) |
| 14 | cmmul | ⊢ maMul | |
| 15 | 7 7 7 | cotp | ⊢ 〈 𝑛 , 𝑛 , 𝑛 〉 |
| 16 | 5 15 14 | co | ⊢ ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) |
| 17 | 13 16 | cop | ⊢ 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 |
| 18 | 9 17 10 | co | ⊢ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) |
| 19 | 1 3 2 4 18 | cmpo | ⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) ) |
| 20 | 0 19 | wceq | ⊢ Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) ) |