This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volss | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐴 ) ≤ ( vol ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | mblss | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ℝ ) |
| 4 | ovolss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
| 6 | mblvol | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
| 8 | mblvol | ⊢ ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) |
| 10 | 5 7 9 | 3brtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐴 ) ≤ ( vol ‘ 𝐵 ) ) |