This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattpos1.a | |- A = ( N Mat R ) |
|
| mattpos1.o | |- .1. = ( 1r ` A ) |
||
| Assertion | mattpos1 | |- ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattpos1.a | |- A = ( N Mat R ) |
|
| 2 | mattpos1.o | |- .1. = ( 1r ` A ) |
|
| 3 | eqid | |- ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
|
| 4 | 3 | tposmpo | |- tpos ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 1 5 6 | mat1 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 8 | 7 | tposeqd | |- ( ( N e. Fin /\ R e. Ring ) -> tpos ( 1r ` A ) = tpos ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 9 | 1 5 6 | mat1 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( j e. N , i e. N |-> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 10 | equcom | |- ( j = i <-> i = j ) |
|
| 11 | 10 | a1i | |- ( ( j e. N /\ i e. N ) -> ( j = i <-> i = j ) ) |
| 12 | 11 | ifbid | |- ( ( j e. N /\ i e. N ) -> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 13 | 12 | mpoeq3ia | |- ( j e. N , i e. N |-> if ( j = i , ( 1r ` R ) , ( 0g ` R ) ) ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 14 | 9 13 | eqtrdi | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( j e. N , i e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 15 | 4 8 14 | 3eqtr4a | |- ( ( N e. Fin /\ R e. Ring ) -> tpos ( 1r ` A ) = ( 1r ` A ) ) |
| 16 | 2 | tposeqi | |- tpos .1. = tpos ( 1r ` A ) |
| 17 | 15 16 2 | 3eqtr4g | |- ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) |